Architecture standards for synchronization

Michael Mayer

Editor - G.8264, G.8265, G.8275

WSTS 2013, April 2013

Overview

- Architecture in ITU
 - Why?
 - Relation to other Recommendations
- General aspects of architecture in ITU-T
 - The models
- Overview of key Synchronization recommendations
 - G.8264, Physical layer frequency (SyncE)
 - G.8265, Packet based frequency
 - G.8275, Packet based time/phase

Architecture

- Architecture means different things to different people.
 - The overall design of something (e.g. building)
 - How things are arranged (e.g. "The chemical architecture of the human brain" From Oxford dictionary)
- Applying this to telecom:
 - How are networks designed and how are the individual components arranged

Architecture or design?

- Related, and are often used interchangeably
 - Design is how a specific implementation is produced
 - Architecture goes further in describing how things may be arranged
- Architecture in ITU-T describes how functions may be arranged in order to achieve a specific goal
 - The architecture provides guidance on how things should be designed
- We design networks based on an overall architecture

Examples of ITU-T architectures

- G.803: architecture of SDH
- G.872: architecture of OTN
- G.8010: Architecture of Ethernet...
- G.8121: MPLS

 Note formal architectures are based on a fixed set of principles define in separate recommendations

Architecture development

Coordination with other technology standards

- Network model may become complex when considering transport technology choices
 - SDH, OTN, MPLS, IP, Ethernet
 - Synchronization functions are only a small part of a network element (but an important part)
- Formalized method becomes invaluable for coordination
 - Simplify and separate issues
 - Individual standards (e.g. for components) can be developed separately with high degree of success of interoperability

Next generation synchronization

- Key aspects of NGN synchronization
 - Packet network infrastructure
 - Moving away from SDH
 - But can't throw out existing network
 - New wireless backhaul requirements
 - Air interface
 - New methods
 - CES, PTP, Synchronous Ethernet
 - New clocks
 - BC, TC, GM
 - Architecture helps see how all pieces fit together

The sync architecture

- Requirements start with basic principles
 - Example above shows basic protection
 - This had significant effect on first Telecom profile

What does the architecture look like?

Extension for Packet timing

- Specific functions needed for Time distribution can be added to the basic model
 - Network may remain unchanged

Going further: Frequency assist

- Physical layer synchronization model is that of SDH/SyncE.
 - Boundary clock function starts to appear

Details of functions

- Individual functions may be specified in different recommendations
- May include other aspects related to basic transport, in addition to synchronization
- Some blocks may contain significant detail
 - Sync functions in G.781
 - Clocks in G.8262 (e.g. EEC)
 - Transport functions in G.8021 (Ethernet)

Ethernet detail example

Ethernet Detail example, continued

- Description of functional block will specify as much detail as necessary to define implementation requirements
 - Note: references IEEE802

General NGN sync Rec. structure

Sync Architecture Recommendations

- G.8264/Y.1364: Distribution of timing information through packet networks
 - G.8264/Y.1364 (10/2008)
 - G.8264/Y.1364 (2008) Amd. 1 (09/2010)
 - G.8264/Y.1364 (2008) Cor. 1 (11/2009)
 - G.8264/Y.1364 (2008) Amd. 2 (02/2012)
 - G.8264/Y.1364 (2008) Cor. 2 (02/2012)
- G.8265/Y.1365: Architecture and requirements for packet-based frequency delivery
 - G.8265/Y.1365 (10/10)
- G.8275: Architecture and requirements for packetbased time and phase delivery
 - Under development

G.8264: Distribution of timing through packet networks

- Main aspects:
 - NGN sync concepts
 - Evolution of network to packet based network and use of CES to support PDH services
 - Describes Sync Ethernet concepts in coordination with G.8261 and G.8262
 - Synchronous Ethernet Sync status message channel
 - ESMC
 - Based on IEEE802.3 slow protocol, using Organization Specific Slow Protocol (OSSP)
 - Defines PDU format
 - Sync Selection based on SSM QL
 - Use of Synchronous Ethernet in Multi-operator context
 - Supporting functional models

G.8264: Multi-Carrier operation

- G.8264 starts to address physical sync as a service
 - Distribution of sync moving to the edge
 - Multi-carrier situations now part of standards

G.8265: Architecture and requirements for packet based frequency delivery

- Evolution of synchronization distribution is based on packet techniques such as PTP.
- G.8265 described basic requirements for frequency distribution
 - Necessary in order to define operation of a packet system within overall synchronization distribution network.
 - Although not mandated, a network could have mixed technology
 - SDH
 - Sync Ethernet
 - Packet
 - Frequency only
 - Applicable to both NTP and PTP
 - Addresses protection aspects
 - IEEE1588 Profile development based on architecture
 - Telecom slave clock defined

G.8265: timing as a service now with packet timing

G.8265 architecture details

Telecom slave construct

- Required to meet telecom protection requirements
- Default BMCA could not support telecom requirements
- Telecom slave for frequency allows G.781 protection to be implemented with PTP based networks
- Clock requirement has been driven by architecture

G.8275: Architecture and requirements for packet based time/phase delivery

- Recommendation under development (planned completion in July 2013)
- Focus on network based on time/phase distribution using IEEE1588
 - Time/phase requirements are a substantially different paradigm
- Architectural aspects
 - How do the multiple types of network clocks interact
 - Boundary and Transparent clocks
 - Slave clocks
 - Grand Master clocks
 - Packet Reference Time Clock (PRTC)
 - Protection aspects
 - Best Master clock
 - Fit with BMCA with telecom practices (e.g. automatic vs provisioned)
 - Syntonization provided by Synchronous Ethernet
 - Information aspects (information across time interface)

Summary

- Architecture recommendations are important
 - Developed to provide an overall framework for how technology can be deployed in a network
 - Provide a framework for controlled technology evolution
 - Synchronization related architecture documents
 - Provide controlled evolution of technology
 - Ensure high degree of interoperability of different synchronization technologies
 - Guidance for developing equipment recommendations
 - Synchronization solutions fit with traffic functions of NEs
 - Strong linkage to Hypothetical Reference Model (HRM) development
 - Provide guidance to other SDO's

